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We report on transcritical bifurcations of periodic orbits in nonintegrable two-dimensional Hamiltonian
systems. We discuss their existence criteria and some of their properties using a recent mathematical descrip-
tion of transcritical bifurcations in families of symplectic maps. We then present numerical examples of
transcritical bifurcations in a class of generalized Hénon-Heiles Hamiltonians and illustrate their stabilities and
unfoldings under various perturbations of the Hamiltonians. We demonstrate that for Hamiltonians containing
straight-line librating orbits, the transcritical bifurcation of these orbits is the typical case which occurs also in
the absence of any discrete symmetries, while their isochronous pitchfork bifurcation is an exception. We
determine the normal forms of both types of bifurcations and derive the uniform approximation required
to include transcritically bifurcating orbits in the semiclassical trace formula for the density of states of
the quantum Hamiltonian. We compute the coarse-grained density of states in a specific example both semi-
classically and quantum mechanically and find excellent agreement of the results.
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I. INTRODUCTION

The transcritical bifurcation (TCB), in which a pair of
stable and unstable fixed points of a map exchange their
stabilities, is a well-known phenomenon in one-dimensional
non-Hamiltonian systems. A simple example occurs in the
quadratic logistic map (see, e.g., [1]),

xn+l:rxn(l_xn)7 (l)

where {x,} are arbitrary real numbers and r is the control
parameter. This map has—among others—two fixed points
xT=0 and x§ =1-1/r, which exlchange their stabilities at the
critical value r=1. For r<1, xT is stable and x: is unstable,
whereas the inverse is true for r>1. (Note that in many
textbooks discussing the quadratic map, this bifurcation is
not mentioned as the values of the variable x are usually
confined to be non-negative, while x;<0 for r<1.) The
TCB occurs in many maps used to describe growth or popu-
lation phenomena (see [2] for a recent example). TCBs have
also been reported to occur in various time-dependent model
systems [3-9] and shown, e.g., to be involved in synchroni-
zation mechanisms [5,6]. In [8,9], TCBs have been found to
play a crucial role in transitions between low- and high-
confinement states in confined plasmas, and their unfoldings
have been analyzed.

In this paper we report on the occurrence of such bifurca-
tions in a class of two-dimensional nonintegrable Hamil-
tonian systems. Since the TCB does not belong to the generic
bifurcations in two-dimensional symplectic maps [10], we
consider it useful to investigate also the mathematical condi-
tions under which it can exist, its stability under perturba-
tions of the Hamiltonian, and its unfoldings when it is de-
stroyed by a perturbation. For this, we rely on mathematical
studies by Janich [11,12], who introduced a class of “cross-
ing bifurcations,” to which the TCB belongs, and derived
several theorems and useful formulas for crossing bifurca-
tions of straight-line librational orbits. Finally, in view of the
important role which Gutzwiller’s semiclassical trace for-
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mula [13] plays for investigations of “quantum chaos” (see,
e.g., [14,15]), we study the inclusion of transcritically bifur-
cating orbits in the trace formula by an appropriate uniform
approximation.

Generic bifurcations of fixed points in two-dimensional
symplectic maps have been classified by Meyer [10] in terms
of the number m=1,2,... that corresponds to a period
m-tupling occurring at the bifurcation. For an easily readable
presentation of this classification of generic bifurcations, and
of the corresponding normal forms used in semiclassical ap-
plications, we refer to the textbook of Ozorio de Almeida
[16]. Bifurcations occurring in Hamiltonian systems with
discrete symmetries have been investigated in [17-20]; the
TCB was, however, not mentioned in these papers. In [20] it
has been shown that all other nongeneric bifurcations occur-
ring in such systems can be described by the generic normal
forms given in [16], except for different bookkeeping of the
number of fixed points which is connected not only to an
m-tupling of the period, but also to degeneracies of the in-
volved orbits due to the discrete symmetries. For the TCB
this is not the case: it requires a normal form that is not in the
generic list of [16]. We derive an appropriate normal form
for the TCB, starting from the general criteria given in [11],
and find it to correspond to that given in the literature for
non-Hamiltonian systems [21,22]. We use this normal form
to develop the uniform approximation needed to include
transcritically bifurcating orbits in the semiclassical trace
formula. In a specific example that includes a TCB, we show
numerically that our result allows to reproduce the coarse-
grained quantum-mechanical density of states with a high
precision.

In the nonlinear and semiclassical physics community,
there exists an occasional belief that nongeneric bifurcations
occur only in systems which exhibit discrete symmetries
(time-reversal symmetry being the most frequently met in
physical systems). The examples of TCBs which we present
in this paper are obtained in a class of autonomous Hamil-
tonian systems with mixed dynamics; starting from the fa-
mous Hénon-Heiles (HH) Hamiltonian [23] we change the
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coefficient of one of its cubic terms and add other terms
destroying some or all of its discrete symmetries. All the
TCBs that we have found involve one straight-line libration
belonging to the shortest “period one” orbits. Our formal
investigations therefore focus on the class of two-
dimensional Hamiltonians containing a straight-line libra-
tional orbit. In this class of systems the TCB is, in fact, found
to be the typical isochronous bifurcation of the librating or-
bit. The isochronous pitchfork bifurcation (PFB), however,
which in Hamiltonian systems with time-reversal symmetry
(such as the standard HH system) is the most frequently met
nongeneric bifurcation, is the exception here. We show how
under a specific perturbation the PFB can unfold into a
saddle-node bifurcation (SNB) followed by a TCB. In a spe-
cific example, we demonstrate that the TCB can exist in a
system without any discrete (spatial or time-reversal) sym-
metry, thus proving that the above-mentioned belief is incor-
rect.

Our paper is organized as follows. In Sec. I we compile
results of Jdnich [11,12] relevant for our investigations.
Starting from two-dimensional symplectic maps, we define a
class of “crossing bifurcations” to which the TCB and the
isochronous PFB belong. We discuss various criteria and
properties of these bifurcations and give some useful formu-
las for the specific case of a bifurcating straight-line libra-
tion. The mathematically less interested reader may skip Sec.
IT and jump directly to Sec. III, where we present numerical
examples of the TCB and their characteristic features in the
generalized Hénon-Heiles Hamiltonians. We also study there
various types of unfoldings of the TCB under perturbations
of the Hamiltonian. In Sec. IV we discuss the semiclassical
trace formula for the density of states of a quantum Hamil-
tonian, and present the uniform approximation by which bi-
furcating periodic orbits can be included. In Sec. IVD we
present a semiclassical calculation of the density of states in
a situation where the TCB occurs between two of the shortest
periodic orbits, and demonstrate the validity of the uniform
approximation by comparison of the results with those of a
fully quantum-mechanical calculation. In Appendix A we de-
rive the appropriate normal forms for the TCB and the iso-
chronous PFB which are needed in semiclassical applica-
tions. In Appendix B we briefly discuss the stability
exchange of two orbits in a “false transcritical bifurcation”
which actually consists of a pair of close-lying pitchfork bi-
furcations.

II. MATHEMATICAL PREREQUISITES

In this section we present results of Jinich [11,12] which
are relevant for our investigations. We shall only quote theo-
rems and other results; for readers interested in the math-
ematical proofs or other details, we refer to the explicit con-
tents of [11,12].

A. Poincaré map and stability matrix

We are investigating bifurcations of periodic orbits in
two-dimensional Hamiltonian systems. They are most conve-
niently investigated and mathematically described by observ-
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ing the fixed points on a suitably chosen projected Poincaré
surface of section (PSS).1 Since the PSS here is two dimen-
sional, we describe it by a pair of canonical variables (¢, p).
The time evolution of an orbit then corresponds to the two-
dimensional Poincaré map

(g.p) — (Q.P), (2)

where (g,p) is the initial and (Q, P) the final point on the
PSS. Fixed points of this map, defined by Q=¢g, P=p, cor-
respond to periodic orbits. We introduce € as a “bifurcation
parameter” which in principle may be the conserved energy
of the system or any potential parameter, normalized such
that a bifurcation occurs at e=0. Here we specialize to the
energy variable by defining

e=E-E,, (3)

where E; is the energy at which the considered bifurcation
takes place. We assume that the bifurcating orbit returns to
the same point on the PSS after one map (2), so that Q=gq,
P=p; in this paper this will be called a “period one” orbit.
We shall only study its isochronous bifurcations and hence
only consider the noniterated Poincaré map.

The map (2) is symplectic and thus area conserving in the
(g,p) plane, and may be understood as a canonical transfor-
mation,

0=0(q.p.€), P=P(q,p,e). (4)

Janich [11] has given a classification of bifurcations of fixed
points in two-dimensional symplectic maps, which we shall
summarize in the following. We use his notation Q,, P, for
partial derivatives of the functions Q and P, respectively,
with respect to u,

_90 op

- ) Pu=_, 5
Qu=" (5)

where u is any of the three variables ¢, p, or €. Analogously
Qqq, P pe €tc., denote second and higher partial derivatives.
Due to the symplectic nature of Eq. (4), the determinant of
the first derivatives of Q and P with respect to ¢ and p is
unity

®<Q4mnd QA%nd)zl ©)

P,(q.p.€) P,(q.p.€)

We consider an isolated “period one” orbit with fixed
point (¢g,p)=(0,0), for all values of € where it exists, and
denote it as the A orbit. Its stability matrix is then given by

'With “projected” we mean the fact that we ignore the value of the
canonically conjugate variable (e.g., p,), to the variable (e.g., y) that
has been fixed (e.g., by y=y() to define the true mathematical PSS
which lies in the energy shell. In the physics literature, it is standard
to call its projection (with p,=0) the PSS. Due to energy conserva-
tion, the value of p, on the unprojected PSS can be calculated
uniquely, up to its sign which usually is chosen to be positive, from
the knowledge of ¢.p,yy and the energy E through the implicit
equation E=H(q,yo,p,p,), where H(x,y,py,p,) is the Hamiltonian
in Cartesian coordinates.
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0,(0,0,€) 0,(0,0,€) ) -

Male) = (Pq(0,0,e) P,(0.0,¢)

At €=0, where the orbit undergoes an isochronous bifurca-
tion, M4(0) has two degenerate eigenvalues +1, so that
tr M 4(0)=2.

Henceforth we shall omit the arguments (0,0,0) in the
partial derivatives of Q and P which—unless explicitly men-
tioned otherwise—will always be evaluated at the bifurcation
point. When we need some of these partial derivatives at p
=¢g=0, but at arbitrary values of €, we shall denote them by
Q,(e), etc. When no argument is given, €=0 is assumed. We
thus write

0,6 0,(e 0, 0
M(e) =( ! "L M) =7 ] (8)
Pq(e) Pp(e) P‘[ PP
The slope of the function tr M,(e) at e=0 (coming from a
side where the orbit A exists) becomes, in this notation,
tr M4(0) = Qe+ P 9)

By a rotation of the canonical coordinates ¢q,p it is always
possible to bring M4(0) into the form

1
M,(0) =< Q”>, 0, 0. (10)
0 1
We shall henceforth assume that the coordinates have been
chosen such that Eq. (10) is true.” Then, with Eq. (6) one
finds easily the determinant derivative formula [11]

OQu+tPp=0,Py (u=gq.p,e), (11)
and Eq. (9) takes the simpler form
tr M}(0) = Q,P,e. (12)
The total fixed point set
Fi={(¢.p.9|0(q.p.€) = q.P(q.p.€) =p} (13

is the inverse image of the origin (0,0) in R? under the map
(Q0-¢q,P-p) whose Jacobian matrix at (0,0,0) is

J_<Qq—l 0, Qe)_<0 0, 0.
“\p, P-1P/) \0 0 P,

In the generic case, P.# 0 and J has rank 2. This leads to the
only generic isochronous bifurcation according to Meyer
[10], the saddle-node bifurcation (SNB) (also called “tangent
bifurcation”). For this bifurcation, the fixed-point set F Eq.
(13) is a smooth one-dimensional manifold, consisting of
two half-branches tangent to the ¢ axis at the bifurcation
point with slopes tr M(0)= * . The orbit A then exists ei-
ther only for e=0 or only for e=0; no other orbit takes part
in such a bifurcation.

). (14)

q

’In some cases one may find that M4(0) has the transposed simple
form in which 0,=0 and P,#0. In this case one may simply ex-
change the coordinates by a canonical rotation Q — P, P——Q (and
q— p, p——¢q) in all formulas below and in Appendix A 1. The case
0,=P,=0 is exceptional and occurs only for harmonic potentials
(cf. [24]).
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Following Jénich [11], we speak of a rank I bifurcation,
when the Jacobian J in Eq. (14) has rank 1, which is the case
for

P.=0. (15)

Then, after a suitable (e-dependent) translation of the p vari-
able, J can always be brought into the form

J:(Qq—l 2, Qe):<0 2, 0>' (16)
p, P,-1 P/ \0 0 0

We shall formulate all following developments in the suit-
ably adapted coordinates (q,p), for which the form (16)
holds, and discuss only rank 1 bifurcations.

B. Crossing bifurcations of isolated periodic orbits

A rank 1 bifurcation for which the Hessian

K= (P a P q6>

Pqe Pee
at (0,0,0) is regular and indefinite, i.e., for which det K
= quPEE—P2 <0, shall be called a crossing bifurcation.
Jinich showed [11] that a necessary and sufficient criterion
for an orbit A to undergo a crossing bifurcation at €=0 is for

the slope tr M ,(€=0) to be finite and nonzero. With Egs. (10)
and (12) we see that

(17)

(18)

for crossing bifurcations. It follows that if the orbit A under-
goes a crossing bifurcation at €=0, it exists on both sides of
a finite two-sided neighborhood of €=0. Jdnich also showed
that for such a bifurcation, the total fixed-point set F (13) is
the union AUB of two smooth one-dimensional submani-
folds intersecting at the bifurcation point. The set A is the set
of fixed points (0,0,€) of the A orbit; we shall call it the
fixed-point branch A. The set B is the fixed-point set of a
second orbit B which takes part in the crossing bifurcation.
We shall discuss here only two types of crossing bifurca-
tions: transcritical and forklike bifurcations. Their properties
are specified in the following two sections. A rank 1 bifurca-
tion with a regular and definite Hessian K, i.e., with det K
>0, is sometimes called an “isola center” (cf. the normal
form for the isola center in one-dimensional Hamiltonians at
the end of Appendix A 1). Here the total fixed-point set F
consists of the single isolated point (¢,p,€)=(0,0,0).

P,#0

1. Transcritical bifurcation (TCB)

A transcritical bifurcation (TCB) occurs when, in the
adapted coordinates (g,p) for which Eq. (10) holds, one has

P, #0. (19)

Then, there exists another isolated periodic orbit B on both
sides of €=0, forming a fixed-point branch B intersecting
that of the orbit A at e=0 with a finite angle. The functions
tr M, (€) and tr M g(€) have opposite slopes at the bifurcation

tr M,(0) =—tr Mz(0) (“TCB slope theorem”). (20)
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In the scenario of a TCB, the orbits A and B simply ex-
change their stabilities and no new orbit appears (or no old
orbit disappears) at the bifurcation.

Note. Assume that the orbit A is a straight-line libration,
chosen to lie on the y axis, so that the Poincaré variables are
q=x, p=p, (see Sec. I B 2 below). Then, if the system is
invariant under reflexion at the y axis, such a reflexion leads
to P(q.p.€)=—P(-q,—p.€). Therefore, P, (q=0,p=0,€
=O)=qu:0, and the bifurcation cannot be transcritical. The
simplest possible crossing bifurcation then is forklike (see
next item). In short: Straight-line librations along symmetry
axes cannot undergo transcritical bifurcations.

2. Forklike bifurcation (FLB)

A forklike bifurcation (FLB) occurs when one has

P,,=0,

7 Py # 0. (21)

Then, there exists another isolated periodic orbit B, either
only for €=0 or only for e=0. The fixed-point set of B
consists of two half-branches intersecting the set A at e=0 at
a right angle. In the adapted coordinates corresponding to
Eq. (10), one may parametrize the set B by (¢,pg(q).€5(q))
and finds

PH(0) = €4(0)=0,  €4(0) # 0. (22)
Although tr Mz(e) is not a proper function of €, a limiting
slope tr Mp(0) #0 can be defined for both half-branches of
the set B in the limit e— 0, coming from that side where they
exist, and be shown [11] to fulfill the relation

tr Mp(0)=-2tr M(0) (“FLB slope theorem”).

(23)

In the same limit, the curvature of the set B at the bifurcation
point is given by

3QquqP — Qquqq_
30,P,c

In the pertinent physics literature, this bifurcation is often
called the (nongeneric) isochronous pitchfork bifurcation
(PFB). Note that here the two half-branches of the set B
correspond to two different periodic orbits. They can be ei-
ther locally degenerate (to first order in €), or globally de-
generate due to a discrete symmetry (reflexion at a symmetry
axis or time reversal).

In the generic PFB corresponding to Meyer’s classifica-
tion [10], the fixed point scenario near €=0 is identical with
that of the FLB. However, here the two fixed points of the set
B correspond to one single orbit B which has twice the pe-
riod of the primitive orbit A. In fact, the fixed-point branch A
crossing the line tr M,=2 is that of the iterated Poincaré
map: the generic PFB is period doubling. The existence cri-
terion (21) and the relations (22)—(24) for the B orbit hold
here also [25].

€3(0) =

(24)
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C. Some explicit formulas for straight-line librations

1. Definition of the librational A orbit

We now specialize to straight-line librational orbits in
two-dimensional autonomous Hamiltonian systems, defined
by Hamiltonian functions

H(x,y.ppy) = 5(pr + py) + V(x.y) (25)

with a smooth potential V(x,y). Straight-line librations form
the simplest type (and so far the only one known to us) of
periodic orbits in Hamiltonian systems that undergo tran-
scritical bifurcations. Let us choose the direction of the libra-
tion to be the y axis and call it the A orbit. The potential then
must have the property

‘;—Vm,y) ~0 (26)
X

for all y reached by the libration. The A orbit, which we
assume to be bound at all energies, then has x(¢)=x(r)=0 for
all times 7, and its y motion is given by the Newton equation

() + %(o,ym) S0y =yate,  (27)

where y,(z, €) is henceforth assumed to be a known periodic
function of ¢ with period T4(€). For the A orbits in the (gen-
eralized) HH potentials discussed in the following section,
the function y,(7,€) can be expressed in terms of a Jacobi-
elliptic function [26]. We choose the time scale such that
v4(0, €) is maximum with

v4(0,6)=0 V e (28)

A suitable choice of Poincaré variables is to use the surface
of section defined by y=0, and the projected PSS becomes
the (x,p,) plane, so that we define g=x, p=p,. We again
assume that the orbit A is isolated and exists in a finite inter-
val of € around zero. The fixed-point branch A is thus again
given by the straight line (g4,p4,€)=(0,0,¢€) in the (¢,p,€)
space.

In [12] Jdnich has given an iterative scheme to calculate
the partial derivatives 0, Q) etc. for this situation for any
given (analytical) potential V(x,y) with the above properties.
To this purpose, one has first to determine the fundamental
systems of solutions (£;,&) and (7;,7,) of the linearized
equations of motion in the x and y directions, respectively,

1) + V. (0,y4(2,€) (1) = 0, (29)

ﬂ(t) + ‘/yy(o’yA(ts E)) ﬂ(t) = 0’ (30)

with the initial conditions

(51(0) 52(0)) <n1(0) n2(0)> (1 0) y
. . = = €.
£(0) &(0) 71(0)  7,(0) 0 1

(31
For simplicity, we do not give the argument € of the &(r) and
7,(t), but we should keep in mind that they are all functions

of e In Egs. (29) and (30) the subscripts on the function
V(x,y) denote its second partial derivatives with respect to
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the corresponding coordinates. In the formulas given below,
we denote by Vi(r), V1), etc., with i,j e (x,y) the partial
derivatives taken along the A orbit, i.e., at x=0, y=y,(t, €) as
in Egs. (29) and (30), evaluated at the bifurcation point €
=0. If the partial derivatives have no argument, they are
taken at the period T4(¢€)), i.e., V,=V,(Ts(&)), etc.
Knowing the five functions y,(¢,e=0) and &(r), n;(¢) (i
=1,2) at €=0, all desired partial derivatives of Q(q,p, €) and
P(q,p,e€) at (g,p,€)=(0,0,0) can be obtained by (progres-
sively repeated) quadratures, i.e., by finite integrals over
known expressions including these five functions, partial de-
rivatives of V(x,y), and the functions obtained at earlier
steps of the scheme (whereby the progression comes from
increasing degrees of the desired partial derivatives).

2. Stability matrix of the A orbit

We note that the equation (29) is nothing but the stability
equation of the A orbit, since the ¢ by definition are small
variations transverse to the orbit. In the standard literature,
Eq. (29) is also called the “Hill equation” (cf., e.g., [14,27]).
The stability matrix M, at the bifurcation of the A orbit is
therefore simply given by

M, (0) = (Qq Qp) _ (%l(TA) %2(TA))’ (32)
P, P, &(Ty) &(Ty)

with T,=T,(e=0). Its eigenvalues must be \;=N\,=+1, as
seen directly from Eq. (10). The solutions &z, €) of Eq. (29)
are in general not periodic. But at the bifurcations of the A
orbit, where tr M,=+2, one of the &(z,€=0) is always peri-
odic with period T, (or an integer multiple m thereof) [27]
and describes, up to a normalization constant depending on
€, the transverse motion of the bifurcated orbit at an infini-
tesimal distance € from the bifurcation (cf. [26,28,29]).

3. Slope of the function tr M ,(€) at €=0

Here we give the explicit formulas, obtained from [12],
for the slope tr M}(0)=Q,+ P, see Eq. (9), of the function
tr M,(e) at the bifurcation. The quantities Q. and P, are
given, in terms of the potential V(x,y) in Eq. (25) and the

other ingredients defined above, by

1 1 (T
Qqe= qunl(TA) - 7}[0 Vxxy(t)[ngl(t)
- 0,506 (1) m(r)at, (33)
-V 1 (Ta
pe= ((V ;;) Qp’?l(TA) - 7[ Vxxy(t)[Ppé:l(t)
y yJ0

- P &(0]&(0) n(1)at. (34)

In the adapted coordinates where tr M4(0) has the form (10)
with Qq=Pp=l and Pq=0, the slope becomes
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(_ Vxx)
(V,)?

tr My(0)=Q, P,.= Q,m(T4)

1 Ta
_VQP f Vo, (E@O (e, (35)
g

0

For the case that tr M,(0) has the transposed tridiagonal form
with Qp=0 and P, 0, the formula becomes

1
tr M,(0) = P,Q,c= qu 71(Ty)

1 Ta
+ _qu Ve &0 (Ddt.  (36)
Vy 0

An independent derivation of Egs. (33)—(36) is given in
[30], where it is shown that the first terms are due to the
variation of the A orbit’s period 7, with €, whereas the inte-
gral terms are due to the € dependence of the functions &(7).

4. Criterion for the TCB

For a bifurcation to be transcritical, we need quaﬁO.

From [12] we find the following explicit formula for P,

Ty
Pyy=- f V(D& (1), (37)

0

which also yields explicitly the parameter b in its normal
form given in Eq. (A24).

If the potential is symmetric about the y axis, then V(1)
is identically zero and the TCB cannot occur, as already
stated in Sec. II B 1. However, even if V,,(7) is not zero,
special symmetries of the function &(z), in combination with
that of V., (1), can make the integral in Eq. (37) vanish. An
example of this is discussed in Sec. III C 5.

IIL. TCBS IN THE GENERALIZED HENON-HEILES
POTENTIAL

A. The generalized Hénon-Heiles potential

For our numerical studies, we have investigated the fol-
lowing family of generalized Hénon-Heiles (GHH) Hamilto-
nians:

H(x,y,p..p,) = 5(ps + p}) + 3 (> +7)
+ a(— %y3 + Py + ,Byzx). (38)

Here « is the control parameter that regulates the nonlinear-
ity of the system, and 7, 3 are parameters that define various
members of the family. The standard HH potential [23] cor-
responds to y=1, B=0. It has three types of discrete symme-
tries: (i) rotations about 27/3 and 4/3, (ii) reflections at
three corresponding symmetry lines, which together define
the Cs, symmetry, and (iii) time-reversal symmetry. There
exist three saddles at the critical energy E*=1/6a, so that
the system is unbound and a particle can escape if its energy
is E>E*. For y#1, B#0, the spatial symmetries are in
general broken (except for particular values of y and 8) and
only the time-reversal symmetry is left. There still exist three
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FIG. 1. Trace of the stability matrix M of the “period one” orbits in the standard HH potential, plotted versus scaled energy e. The
suffixes indicate their Maslov indices. Only the first two (Rs and L¢) of the orbits born at an infinite sequence of isochronous PFBs of the
A orbit, cumulating at the saddle energy e=1, are shown (dashed lines).

saddles, but in general they lie at different energies. There is
always a stable minimum at x=y=0.

It is convenient to scale away the nonlinearity parameter
a in Eq. (38) by introducing scaled variables x'=ax, y’
=ay, and a scaled energy e=E/E*=6a’E. Then Eq. (38)
becomes

o 2 2 2 2 2 3
h=e=6a"E=3(p, +p, +x'*+y'?) =2y

+6(yx"?y + By ), (39)

so that one has to vary one parameter less to discuss the
classical dynamics. (For the standard HH potential with vy
=1, B=0, the scaled energy e then is the only parameter.) For
simplicity, we omit henceforth the primes of the scaled vari-
ables x',y’.

Before we discuss the periodic orbits in the system (39),
let us briefly recall the situation in the standard HH system in
which all three saddles lie at the scaled energy e=1.

1. Periodic orbits in the standard HH potential

The periodic orbits of the standard HH system have been
studied in [26,28,31,32], and their use in connection with
semiclassical trace formulas in [33-38]. We also refer to [24]
(Sec. 5.6.4) for a short introduction into this system, which
represents a paradigm of a mixed Hamiltonian system cov-
ering the transition from integrability (e=0) to near chaos
(e>1).

In Fig. 1 we show the trace tr M of the stability matrix M,
henceforth called “stability trace,” of the shortest orbits as a
function of e. Up to energy e¢=0.97, there exist [31] only
three types of “period one” orbits [in the sense defined after
Eq. (3)]: (1) straight-line librations A along the three sym-
metry axes, oscillating towards the saddles; (2) curved libra-
tions B which intersect the symmetry lines at right angles
and are hyperbolically unstable at all energies; and (3) rota-

tional orbits C in the two time-reversed versions which are
stable up to e =0.89 and then become inverse-hyperbolically
unstable. While the B and C orbits exist at all energies, the
orbits A cease to exist at the critical saddle energy e=1
where their period becomes infinite.

When |tr M|>2 or <2, an orbit is unstable or stable, re-
spectively. When tr M =2 it either undergoes a bifurcation if
the orbit is isolated, or it belongs to a family of degenerate
orbits in the presence of a continuous symmetry. The latter is
seen to occur in the limit ¢ — 0, where the orbits A, B, and C
all converge to the family of orbits of the isotropic two-
dimensional harmonic oscillator with U(2) symmetry. The A
orbits undergo an infinite sequence of (nongeneric) isochro-
nous PFBs, starting at ¢=0.97 and cumulating at e=1. At
these bifurcations an alternating sequence of rotational orbits
(labeled R) and librational orbits (labeled L) are born. This
bifurcation cascade, the R and L type orbits, and their self-
similarity have been discussed extensively in [26,28]. In Fig.
1 and in the text below, we indicate their Maslov indices
(needed in semiclassical trace formulas, see Sec. IV) by suf-
fixes to their labels, which allows for unique book keeping of
all orbits. (Only the first two representatives Rs and Lg of the
orbits born along the bifurcation cascade are shown in Fig. 1
by the dashed lines.) At each bifurcation, the orbit A in-
creases its Maslov index (which is 5 up to the first bifurca-
tion) by one unit. Only the first three bifurcations can be seen
in the figure; the others are all compressed into a tiny interval
below e=1. As has been observed numerically in [26,28,32],
tr M, becomes a periodic function of the period 7, in the
limit e — 1. [It can actually be rigorously shown that, asymp-
totically, tr M,(T,) ——2.68044 sin(y3T,) in this limit [30].]

As is characteristic of isochronous PFBs (cf. Sec. II B 2),
the newborn orbits come in degenerate pairs due to the dis-
crete symmetries: the two librational L orbits are mapped
onto each other under reflection at the axis containing the A
orbit, and the two rotational R orbits are connected by time
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FIG. 2. Left panel: Stability traces of A and B type orbits in the GHH potential with y=0.6, 8=0.07, plotted versus scaled energy e. The
three saddles are at ¢;=0.993, ¢;=2.81, and e¢,=3.74. Right panel: Shortest orbits, projected on the (x,y) plane. Orbit A is evaluated at e
=0.99 just below its saddle (e¢y=0.993); all other orbits are taken at e=2. The line types correspond to those in the left panel.

reversal. Note that although the A orbit ceases to exist for
e=1, all R and L type orbits bifurcated from it exist at all
energies e = 1. For some new orbits appearing there, we refer
to the literature [32,38]; in this paper we shall not be con-
cerned with them.

2. Periodic orbits in the generalized HH potential

For y#0, B#0, there exist in general three different
saddles at scaled energies e, e;, and e,, and three different
straight-line periodic orbits, labeled A, A’, and A”, oscillating
towards the saddles. In general, there are three curved libra-
tional orbits B, B’, and B” (not necessarily existing at all
energies) intersecting the three A type orbits at right angles,
and there is always a time-reversally degenerate pair of ro-
tational orbits C going around the origin. It is rather easy to
see that the three A type orbits always intersect each other at
the minimum of the potential located at the origin (x,y)
=(0,0). The equations of motion for the Hamiltonian (38) in
the Newton form are (in the scaled variables corresponding

to a=1)

F+x(1+2yy)+By*=0,

J+y(1+28x) + > —y*=0. (40)

For a straight-line orbit librating through the origin we have
y=ax which, inserted into Eq. (40), yields a cubic equation
for the slope a,

Ba® + 2y+ 1a’>-2Ba-y=0.

For the rest of this paper, we limit the parameters to the
range y>0 and B=0. Then, Eq. (41) has always real roots
that are in general different. In the right panel of Fig. 2
below, we have shown the six shortest (“period one”) libra-
tions obtained numerically for y=0.6, $=0.07, including the
three straight-line orbits A, A’, A” intersecting at the origin.

Further analytical analysis is cumbersome except for the
following special cases:

(41)

(i) B=0, y=1 (standard HH). Two of the slopes are a; ,
=+ 1/43; the third is ay=2 corresponding to the orbit along
the y axis with x(1)=0. The three saddles lie at (x,y)
=(0,1), (=\3/2,-1/2), and (3/2,-1/2), forming an equi-
lateral triangle with side length V3; its sides (and their exten-
sions) form the equipotential lines for e=1. The periodic
orbits are those discussed in Sec. IIT A 1.

(ii) B=0, y# 1. The rotational Cs, symmetry is broken,
but the reflection symmetry at the y axis is kept. Correspond-
ingly, we find two degenerate orbits A’, A” with opposite
slopes a;,=*\y/(2y+1). There is a horizontal equipoten-
tial line at y,=y,=—1/2vy with scaled energy e;=¢,=(3
+1/79)/4~* that contains two saddle points symmetrically
positioned at x; o= % \(2+1/7)/27. At low energies, there is
only one B type orbit intersecting the y axis at a right angle;
two further orbits B’ and B” appear through bifurcations at
higher energies (see examples in Sec. III B). For y>0 there
is a third A orbit librating along the y axis (ay=) towards a
third saddle at (0,1) with energy e,=1. The equipotential
line for e=e;, consists of the horizontal line at y,,
=—1/2v and two branches of a hyperbola. For y>1 the
hyperbola branches lie symmetrically about the y axis, each
intersecting the horizontal line at one of the two symmetric

saddle points. For 0 <y<1, they lie symmetrically about a
horizontal line at y*=(1+37)/4v, the lower of them inter-
secting the line y=y, , at the two symmetric saddle points.

The limiting case 8=0, y=0 yields a separable and hence
integrable system with only one saddle at (0,1) at energy
ep=1 and one A orbit (with a=%). We do not discuss this
system here, but refer to [37] in which it is investigated both
classically and semiclassically in full detail.

B. Examples of transcritical bifurcations and their properties

As mentioned above, we have restricted the parameters y
and B in the GHH potential (38) to be positive (or 8=0). We
find that, depending on the values of 8 and v, at least one or
two of the straight-line orbits A, A’, or A” can undergo a
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FIG. 3. TCB of a degenerate pair of orbits A’, A” and B’, B” at ecg=0.4889 in the GHH potential with y=0.75, B8=0. The degeneracy

is due to the reflection symmetry about the y axis.

TCB with a partner of the curved librational orbits B, B’, or
B". In the following, we shall first show two examples and
then discuss characteristic properties of the TCB. In Sec.
III C we shall study its stability and its unfoldings. Some of
the numerical results can easily be understood analytically in
terms of the normal forms of the various bifurcations and
their unfoldings. These are discussed in detail in Appendix A
and shall be referred to in the following text.

1. Two examples

As a numerical example, we choose y=0.6, 8=0.07. The
three saddle energies are ¢;=0.993 for the A orbit, ¢;=2.81
for the A’ orbit, and e3=3.74 for the A” orbit. In the left
panel of Fig. 2 we show the stability traces tr M(e) of the
shortest orbits. In the right panel we display the shapes of
these orbits in the (x,y) plane. The orbits B’ and B” are
created in a SNB at ¢,,=1.533 and do not exist below this
energy; at high energies they are hyperbolically unstable
with increasing Lyapunov exponents. Contrary to the stan-
dard HH system, only the A orbit is stable at low energies,
while the orbits A’ and A” leave the e=0 limit unstable and
cross the critical line tr M=+2 at some finite energies ercg
and egcp to become stable. At higher energies, all three A
type orbits undergo an infinite PFB cascade as in Fig. 1, each
of them converging at its saddle energy. (We do not show
here the R and L type orbits born at these bifurcations.)

It is between the pairs of orbits A’, B and A”, B’ that we
here observe two TCBs. They occur at the energy ercy
=0.854 447 between the orbits A’ and B, and at efcp
=1.644 between the orbits A” and B’. The situation near eqp
actually displays an example of a slightly broken PFB which
will be discussed in Sec. III C 5.

Another example of a TCB is shown in Fig. 3, obtained
for the GHH potential with y=0.75 and 8=0. This potential
is symmetric about the y axis and therefore the pairs of orbits
A’, A” and B’, B" are degenerate, lying opposite to each
other with respect to the y axis. The crossing happens at
ercg=0.4889 and exhibits the same features as those dis-
cussed in the first example.

2. Characteristic properties of the TCB

We now discuss some of the properties of a TCB and
compare our numerical results to their analytical predictions

from the normal form of the TCB. For this purpose, we take
the example at ercp=0.854 447 seen in Fig. 2, where the
orbits A’ and B bifurcate transcritically. Their crossing is
shown in Fig. 4 on an enlarged scale in the upper left panel,
where the numerical results for tr M(e) are displayed by
crosses (orbit A’) and circles (orbit B). We see that the
graphs of tr M(e) cross the critical line tr M'=2 with opposite
slopes. Their Maslov indices, differing by one unit, are ex-
changed at the bifurcation (see Secs. IV and IV B). The up-
per right panel displays the numerical action difference AS
=S8p—S,4s (circles), where the action of each periodic orbit
(PO) is, as usual, given by

Spo = § p-dq. (42)

In the lower panels, we show the shapes of the orbits in the
(x,y) plane below (left) and above (right) the TCB. The B
orbit is seen to have passed through the A’ orbit at the bifur-
cation. The lengths of both orbits increase with energy e.

The normal form of the TCB is derived and discussed in
Appendix A 2, Sec. C. From it, one can derive the local
behavior of the actions, periods, and stability traces of the
two orbits in the neighborhood of a TCB. For small
deviations e=c(e—epcg) (With ¢>0) from the bifurcation
energy, the stability traces go similar to tr M(e)=2=* 20,
and the action difference of the two orbits similar to AS(e)
=—€’/6b” (see Appendix A 2, Sec. C for the meaning of the
other parameters). These local predictions, given in Fig. 4 by
the solid lines, can be seen to be well followed by the nu-
merical results.

The crossing of the graphs tr M(e) of the two orbits at the
bifurcation energy ercg with opposite slopes is a character-
istic feature of the TCB (see Sec. II B 1). Since the fixed
points of the two orbits coincide at the bifurcation point,
their shapes must be identical there. In the present example,
the orbit B is a curved libration; the sign of its curvature is
changed at the bifurcation, as illustrated in the two lower
panels of Fig. 4.

We note that a completely different mechanism of stabil-
ity exchange of two orbits, which happens through two
close-lying PFBs, has been described in [39]. The stability
diagram may then appear similar to that in the upper left of
Fig. 4, if the crossing point is not analyzed with sufficient
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FIG. 4. TCB in the GHH potential with y=0.6, 8=0.07. Orbits A" and B exchange their stabilities (and Maslov indices o0=4,5) at
etcp=0.854 447. Upper left: tr M versus energy e; crosses (A’) and circles (B) are numerical results, solid lines the local prediction (A26).
Upper right: Action difference AS versus e; circles are numerical results and the solid line the local prediction (A27). Lower panels: Shapes
of the crossing orbits in the (x,y) plane before and after the bifurcation.

numerical resolution. Such a “false transcritical bifurcation”
will be briefly discussed and illustrated in Appendix B.

C. Stability and unfoldings of the TCB

Since the TCB is not a generic bifurcation according to
Meyer’s list [10], we now address the question under which
circumstances it can exist and what its structural stability is.
The GHH systems discussed here have time-reversal symme-
try, and it is therefore of interest to study the stability of the
TCB under perturbations of the Hamiltonians that destroy
this symmetry. In this context, it is important to note that a
detailed mathematical study [17], in which all generic bifur-
cations in systems with time-reversal symmetry are classi-
fied, does not mention the TCB; the same holds also for [20].
So far we have only found TCBs which involve a straight-
line libration. On the basis of the results presented in Sec. II,
we believe that in the class of all Hamiltonian systems con-
taining a straight-line librating orbit, the TCB is actually the
generic isochronous bifurcation of the librating orbit. There-
fore, if we find a perturbation of the GHH system that de-
stroys the time-reversal symmetry but preserves a straight-
line libration, the TCB should also exist there. This will be
demonstrated in Sec. III C 4 for a specific example.

A general Hamiltonian H(x,y,p,,p,) supports the exis-
tence of a straight-line libration—which, without loss of gen-
erality, may be chosen to lie on the y axis—if the following
conditions are fulfilled:

oH oH
. Oa a09 =0, — 0, ,0, =O. 43
ax( ¥,0,py) 6px( ¥,0,py) (43)

In the following we will first show how some TCBs are
destroyed under perturbations that violate the conditions
(43), and how they unfold. We find two types of unfoldings
which are also discussed in [8,21] for TCBs in non-
Hamiltonian systems. In the first scenario, the TCB breaks
up into SNBs. In the second scenario, no bifurcation is left in
the presence of the perturbation and the functions tr M(e)
approach the critical line tr M =2 without reaching it, so that
one may speak of an avoided bifurcation. These scenarios
can be described by the extended normal forms given in
Appendix A 2, Sec. D. We then also investigate perturbations
that fulfill the criteria (43), allowing for the existence of
TCBs in systems with or without any discrete symmetries.

1. Addition of a homogeneous transverse magnetic field

We first discuss the addition of a homogeneous magnetic
field B=e.B,, to the Hamiltonian (38) which is transverse to
the (x,y) plane of motion. This is a situation that is fre-
quently set up in experimental physics and gives us one im-
portant way of breaking the time-reversal symmetry. The
momenta p; (i=x,y) in Eq. (38) are replaced by the standard
“minimal coupling,”
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FIG. 5. Unfolding of a TCB by a transverse magnetic field in the
GHH potential with y=0.5, 8=0.1. Shown is tr M versus scaled
energy e. Dashed lines and triangles: Prediction (A26) and numeri-
cal results for field strength By=0 of the unperturbed TCB; Solid
lines and circles: Local prediction (A32) (with an adjusted value of
«) and numerical results for By=0.0001.

e 1
pi—pi—-~A, A=-(XB), (44)
c 2
where A is the vector potential and e the charge of the par-
ticle. This adds the following perturbation to the Hamil-
tonian:

eBQ 1 <€Bo>2
SH =—2(xp,—yp) + = — | (P +y?),
(X,.P1:Py) > (xpy = ypy) 2\ 20 (x*+y7)

(45)

which breaks the time-reversal symmetry of Eq. (38) due to
the linear terms in p, and p,, but also breaks the straight-line
libration condition (43).

As an example, we choose the GHH potential with vy
=0.5, B=0.1. Here the saddle energy for the A’ orbit is e,
=3.83; the other saddles are at ¢;=0.9852 and e,=6.35. In
Fig. 5 we show the stability traces tr M(e) of the orbits A’
and B’ with and without magnetic field. For By=0 (triangles
and dashed-dotted lines), these orbits A’ and B cross at ey,
=1.426 65 in a TCB similar to the examples discussed above.
For By#0 (circles and solid lines), they rearrange them-
selves into pairs A;-Bs and B4-A; colliding in SNBs accord-
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ing to the prediction (A32) of the normal form (A31), in
which « is taken proportional to the value of B,

2. Destruction of the TCB by a perturbation of the potential

Another example of the same unfolding of a destroyed
TCB is shown in Fig. 6. Here the unperturbed GHH potential
is the same as that used in Fig. 3 above, which is symmetric
about the y axis. This time we apply a perturbation of the
potential alone

SV(x,y) = kx'y"?, (46)

whereby x',y’ are rotated Cartesian coordinates such that the
bifurcating A’ orbit lies on the y’ axis. Clearly, this pertur-
bation does not fulfill the conditions (43) (expressed in the
rotated coordinates) and in fact destroys the original TCB of
the orbits A’ and B’ shown in Fig. 3; the same fate happens
also to the pair A” and B” of orbits. We see in Fig. 6 that,
again, the original pairs of orbits on either side of the unper-
turbed TCB rearrange themselves such as to destroy each
other in two pairs of SNBs, each according to the prediction
(A32) of the corresponding normal form. Since the effective
perturbation strengths are different in the two original direc-
tions of the A" and A” orbits, the splitting between the two
pairs of SNBs is slightly different. A problem arises with the
nomenclature of the perturbed orbits, which is somewhat ad
hoc, since all perturbed orbits have become rotations. In the
square brackets in the figure we indicate the names of the
unperturbed orbits, of which A’, A” are straight line and B’,
B” curved librations (their stability traces are shown in Fig. 3
above). The stability traces of the perturbed orbits change
drastically at the original bifurcations, but approach those of
the unperturbed orbits sufficiently far from the bifurcations.
The inset in the upper left of Fig. 6 illustrates one possible
unfolding of a destroyed isochronous PFB (that seen at e
=0.34 between the orbits B and B’-B” in Fig. 3) and will be
commented on in Sec. III C 5 below.

3. An avoided TCB

In Fig. 7 we give an example of an avoided bifurcation.
We start again from the same example as in Fig. 3, but now
we apply the following perturbation:

5H(x’y9pxspy) = K,xlzpy” (47)

again in the same rotated coordinates as for the perturbation
(46) above. By construction, this perturbation does fulfill the

2.0004

2.0

FIG. 6. Unfolding of the TCB shown in Fig. 3
under the perturbation (46) with x=0.0001 (see
text for details). The labels in brackets [ ] corre-
spond to the orbits of the unperturbed system in
Fig. 3. For the inset, see Sec. Il C 5.
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A" and B” shown in Fig. 3 under the perturbation
(47) with k’=0.01 into an avoided bifurcation of
the new orbit pair A” and B near ¢=0.489 (shown
by the heavy dashed lines). The surviving TCB of
the orbit pair A’ and B’ (solid and thin dashed

0.0

libration-conservation conditions (43), expressed in the ro-
tated coordinates (x’,y’) for the orbit A’, so that the TCB of
the orbits A’ and B’ survives. It will be discussed in more
detail in the next section. The perturbation (47) destroys,
however, the TCB of the original orbit pair A” and B” at
etcp=0.489 and is seen to lead to an avoided bifurcation of
the perturbed orbits, which are now called A” and B and
shown by the heavy dashed lines. Their stability traces fol-
low the local behavior (A34) predicted by the normal form
(A33). Again, our nomenclature for the new orbits is not
strict; the perturbed B” orbit has, for ¢>0.489, become a
portion of the new orbit B. As in Fig. 6, the graphs tr M(e) of
the perturbed new orbits approach the unperturbed ones far
from the bifurcations.

4. TCB in a system without any discrete symmetry

We now come to our last, and perhaps most interesting,
example: a TCB in a system without any discrete symmetry.
It is shown in Fig. 7 by the solid line for the orbit A’ and the
thin dashed line for the orbit B'. It is the same as the TCB
shown in Fig. 3 after applying the perturbation (47) that has
been explicitly constructed so as to preserve the straight-line
libration condition (43) in the rotated coordinates x’, y’.
Here y' is the direction of the A" orbit. Thus, the libration A’
in the perturbed system is identical to that in the unperturbed
GHH potential (y=0.75, 8=0). The orbit B’, however, which

line, respectively) is commented in Sec. III C 4.

in the unperturbed GHH system is a curved libration similar
to that shown in Fig. 4, has now become a rotation except at
the TCB point. While it was originally created, together with
its symmetry-degenerate partner B”, in an isochronous PFB
at ¢=0.34 from the original B orbit (see Fig. 3), this PFB is
destroyed under the perturbation (47), and the perturbed B’
orbit is now created at a SNB at ¢=0.343. Its stable lower
branch is that which crosses the unchanged A’ orbit tran-
scritically at the slightly shifted new bifurcation energy
etcp=0.4886.

The shapes of this perturbed B’ orbit in the rotated (x',y")
plane are shown in Fig. 8, on the left side in the energy
region between its creation at e=0.343017 and its TCB at
¢=0.4886 where it is stable, and on the right side for the
energies e =0.4886 where it is unstable. Its librational shape
at e=0.4886, where it is identical to the A" orbit, is shown in
both panels of the figure (note their different scales).

In Fig. 9 we present the shapes of the B’ orbit in the
rotated momentum space (p,+,p,). Here the orbit appears as
a figure-8 type rotation, except at the TCB where it must be
a straight-line libration, as the A’ orbit, also in momentum
space. It should be noted that qualitatively, the shapes in
momentum space are the same for all transcritically bifurcat-
ing B type orbits discussed in this paper, even if they remain
curved librations in coordinate space.

One may interpret the perturbation (47) as the first-order
expansion of a weak inhomogeneous magnetic field with

02 — " " " " 1.0
e=0.4886 e=4.0
e=3.0
e=0.44 =22
e=1.6
0.1 e=0.40 | 05t
e=0.37 FIG. 8. Shapes of the B’ orbit,
shown by the dashed line in Fig.
e=0.35 =0.4886 7, in the rotated (x’,y’) plane at
0.0 1 different energies. Left panel:
e=0.343 00 F . .
. s Stable region, at the energies e
=0.343 (creation in SNB)-0.4886
(TCB point). Right panel: Un-
o1 stable region, at the energies e
e 05 =0.4886 (TCB point)-4.0. Note
- the different scales in the two
panels.
-0.2
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FIG. 9. Same as Fig. 8 but in the rotated mo-
mentum space (p,r,pyr).
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strength proportional to «’. In a homogeneous field, for
which the full perturbation is given in Eq. (45), the Lorentz
force tends to turn all straight-line orbits into curved libra-
tions. In the system perturbed by Eq. (47), the Lorentz force
of this inhomogeneous magnetic field is canceled, at least to
lowest order, by the geometry of the total potential which
tends to curve the librations the other way round. We leave it
to the interested reader to speculate whether this scenario
finds applications in accelerator physics, where one may
want to produce straight-line trajectories in an inhomoge-
neous magnetic field.

5. Creation of a TCB in the unfolding of a PFB

In this section we will show how a TCB can be created by
perturbing a PFB and how its existence may depend on par-
ticular symmetries. Two characteristic unfoldings of isochro-
nous PFBs in one-dimensional dynamical systems have been
described in [8,9], which correspond to the “universal un-
folding” of the isochronous PFB discussed extensively in
[21]. We find the same unfoldings for the isochronous PFBs
of the straight-line librations in the (G)HH potentials; one of
them is of particular interest here as it leads to a TCB. The
corresponding normal forms are given in Appendix A 2, Sec.
F.

In the first scenario, the original parent orbit does not
change its stability, thus avoiding the bifurcation, and a pair
of new orbits is created at a SNB. One of these new orbits
takes the role of the original parent orbit after the bifurcation,
and the perturbed parent orbit takes the role of one of the
new orbits created at the original PFB. Examples of this
scenario can be seen in Fig. 6 (inset closeup) and in Fig. 7, as
results of two different perturbations of the same original
PFB seen in Fig. 3 at e~0.34.

The second scenario is the unfolding into a SNB of a pair
of new orbits, followed by a TCB of one of these orbits with
the original parent orbit. An example of this has already been
pointed out in Fig. 2 (left panel) to occur near e~ 1.62,
where the orbits B’ and B” bifurcate from the A” orbit. In the
following we shall further illustrate this unfolding by explic-
itly perturbing a PFB in the standard HH system.

We start from the HH system, i.e., Eq. (38) with y=1,
B=0, and add the following perturbation to the potential:

oVix,y) = %5)63, (48)

which destroys both the C3, symmetry and the reflection
symmetry at the y axis. It therefore affects the cascade of

isochronous PFBs of the linear A orbit along the y axis (cf.
III A 1). The perturbation (48) is chosen such as to preserve
the straight-line libration condition (43), so that the A orbit
still exists in its presence. To ensure the presence of a TCB in
the perturbed system, we must fulfill the condition P,,# 0
given in Eq. (19). An explicit expression for the quantity P,
in terms of the (total, perturbed) potential V is given in Eq.
(37). [In the integrand of Eq. (37), the function V. (x,y) is
taken along the A orbit with x(r)=0, y=y,(7); see Sec. II C
for details and notation.] Since V.., becomes nonzero with
the perturbation (48), the occurrence of a TCB is possible.
But V,,,# 0 is not sufficient to ensure P, # 0: this will also
depend on the symmetry of the function &(7) appearing in
the integrand of the quantity P,, in Eq. (37).

Now, as discussed in [26,28], the functions &,(r) describe
the x motion (transverse to the A orbit) of the new orbits
created at the successive PFBs of the A orbit. These func-
tions are periodic Lamé functions with well-known symme-
try properties. As it turns out, & (¢) of the L type orbits born
at every second PFB of the cascade are even functions of 7,
where =0 is the time at which y,(¢) is maximum; whereas
those of the R type orbits born at every other bifurcation are
odd. The result is that P, becomes zero at the R type bifur-
cations, in spite of V., #0, while P, #0 for the L type
bifurcations. Consequently, it is only at the L type bifurcation
energies that a TCB can exist in the perturbed system. Our
numerical investigations have confirmed that under the per-
turbation (48) all R type bifurcations remain, indeed, unbro-
ken PFBs with unchanged stability traces tr M(e) to first or-
der in &, while the L type bifurcations are broken up as
discussed above.

In Fig. 10 we show the creation of the orbits Lg and Lg
from the A orbit in the HH system under the perturbation
(48). In the unperturbed HH system, these orbits are created
as a degenerate pair from a PFB at the energy e¢
=0.986 709 235 (cf. [26]), as also seen in Fig. 1. Here the
PFB has been broken according to the second scenario de-
scribed above, unfolding into a TCB of Ag; and L; 4 at pre-
cisely the same critical energy ercg=¢s, and a SNB at ¢¢
—Aeg~0.987 03 where L; and Lg are created. The thin dash-
dotted line gives the slope of tr M(e) of the L orbit at the
TCB which is minus that of the A orbit, as is characteristic of
a TCB. The thin dotted line gives the slope of the original
degenerate pair Lg, L, created in the unperturbed HH system;
this slope is minus twice that of the parent A orbit, as is
typical of a PFB [see Eq. (23) in Sec. I B 2]. The same
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=} e occurs at the energy eq=0.986709 235 of the
2.0025 | PFB of the degenerate pair L, L’ in the unper-
turbed HH potential [26]. (See text for the thin
lines.)
2.0
1.9975 | ‘ o ‘ ‘ ‘
0.98669 0.9867 0.98671 0.98672 0.98673
e

scenario is found at all successive L type bifurcations. In the
perturbed system, the orbit pairs L, L’ are no longer degen-
erate, since the reflection symmetry at the y axis is broken by
Eq. (48). The graphs tr M(e) seen in this figure are predicted
by the normal form (A41), as discussed explicitly in Appen-
dix A 2, Sec. F.

IV. INCLUSION OF A TCB IN THE SEMICLASSICAL
TRACE FORMULA

A. The semiclassical trace formula

Our investigations have been largely motivated by the use
of periodic orbits in the semiclassical description of the den-
sity of states g(E) in a quantum system with discrete spec-
trum {E;}

8(E)=2 SE-E). (49)

Initiated by Gutzwiller (see [13] and earlier references
therein), the periodic orbit theory (POT) [40] (see also
[15,24,41] for general introductions) states that the oscillat-

ing part of the quantum density of states is given, to leading
order in %, by a semiclassical trace formula of the form

Spo(E) 7

8g(E)=2, -APO(E)COS<T - EO-PO)- (50)
PO

The sum goes over all periodic orbits (PO) of the classical
system (including their repetitions), Spo(E) are their actions
(42) and opg their Maslov indices (see [13,42—44] and [24],
Appendix D, for details). The Apg(E) are semiclassical am-
plitudes which depend on the nature of the orbits. For orbits
that are isolated in phase space, the amplitudes were given
by Gutzwiller [13] as

1 Tppo(E)

ArolE) =T V|detl Mpo(E) — 1]

; (51)

in terms of their primitive periods Tppo(E)=dSppo(E)/dE
and stability matrices Mpo(E); here I is the unit matrix with
the same dimension as Mpg. For systems with continuous

symmetries, in which most periodic orbits come in degener-
ate families (in particular in integrable systems), explicit ex-
pressions for the Apg(E) have been derived by various au-
thors [45].

One problem with the Gutzwiller trace formula in mixed
systems, where stable and unstable periodic orbits coexist, is
the divergence of the amplitudes (51) occurring at bifurca-
tions. Remedy is given by uniform approximations, intro-
duced by Ozorio de Almeida and Hannay [46] (see also [16])
and further developed by several authors both for
codimension-one [25,47,48] and codimension-two bifurca-
tion scenarios [37,49]. In the following sections, we will dis-
cuss the uniform approximations and derive its appropriate
form for a pair of transcritically bifurcating orbits.

The trace formula (50) does not converge in mixed sys-
tems and most chaotic systems, in which the number of pe-
riodic orbits proliferates exponentially with increasing
length, so that the summation over all orbits typically cannot
be performed (see [14,40]). In our study, we coarse grain the
density of states by convolution with a normalized Gaussian
with width AE, so that only the shortest orbits with periods
Tpo<Ih/AE contribute to the sum [24,50,51]. Although the
finer details of the spectral information hereby are averaged
out, the coarse-grained density of states

1 2 A g2
gailB) = =3 o E B
i VTAE

(52)
still exhibits its gross-shell structure, provided that AE is not
chosen too large. The correspondingly coarse-grained trace
formula reads [24]

Spo_<E>7T)

0gar(E) = > APo(E)e_[TPOAE/ 2h]2005< - —0Opo
PO h 2

(53)

where it can be seen that the additional exponential factor
suppresses the contribution of longer orbits. This version of
the POT has found many applications to gross-shell effects in
finite fermion systems (see [24,52] for examples).
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B. Uniform approximation for bifurcating orbits

In this section we sketch the derivation for the combined
contribution of a pair of bifurcating orbits A and B to the
semiclassical trace formula (50) for the density of states.
Since the individual amplitudes in the form (51) given by
Gutzwiller diverge at the bifurcation, one has to go one step
back in their evaluation and transform the trace integral to
the phase space [25,53,54]. After doing the integration along
the primitive A orbit® with action S,(E), the remaining part
of the trace integral is over the Poincaré surface of section in
the variables Q and p transverse to the A orbit,

Sg(E)=Re e(i/ﬁ)SA(E)—i(wQ)(rAfdedpc(Q’p’e)e(i/ﬁ)g(Q,p,e)'

(54)

The action function in the phase of the integrand is given by

S(Q,p.€) = S(Q,p,€) — S(€) - Op, (55)

where S(Q,p,€) is the generating function of the canonical
transformation (4) that describes the Poincaré map, and S4(€)
is the action integral (42) of the A orbit as a function of the
control parameter €. By virtue of the canonical relations of
the generating function

==, 4=, (56)

the stationary condition of the function S in the (Q,p) plane
for any fixed e,

as as
@(QO,PO’@ = %(QO,PO’ €) =0, (57)

yields Py=py and Qy=¢q,, so that the stationary points
(Qo,Py,€)=(qy,py,€) of the phase function (55) are the
fixed-point branches of the map and hence correspond to the
periodic orbits. [Note that, by construction, S(¢y,po,€)=0
along the fixed-point branch of the A orbit.]

The amplitude function C(Q,p,€) in Eq. (54) is given
[25] in terms of the generating function S0, p.€) by

pysrepel (20 (58)

C(Q.p.e) =

Note that

a8 . aS
(9—E(Q,p,e) = T(Q.,p.e) =Ty(E) + a_E(Q’p’ e, (59)

where T4(E)=-5S4(E) is the period of the A orbit.

In principle, the integration over Q and p in Eq. (54) is
limited to that domain of the (Q,p) plane which is accessible
under energy conservation. However, in the spirit of the
stationary-phase approximation (including its extensions be-
low) we expect that, due to the rapidly oscillating phase of

3Recall that we only consider primitive “period one” orbits and
their isochronous bifurcations here.
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Eq. (54) in the semiclassical limit $>#, the main contribu-
tions to the integral come from small regions around the

stationary points of the function S(Q.p.e). Assuming that
the fixed points of A and the other orbit(s) taking part in the
bifurcation are situated in the interior of this domain, and
that no other bifurcations happen nearby, we may extend the
integrals over both Q and p from —o° to +%.

Sufficiently far away from the bifurcation point €=0, so
that the orbits A and B are isolated, the stationary-phase in-
tegration of Eq. (54) will yield precisely the contributions of
the isolated orbits A and B to the standard Gutzwiller trace
formula (50) with their individual amplitudes (51). Near the
bifurcation, the stationary-phase approximation fails and one
has to include higher than second-order terms in Q and p in

the function S(Q,p, €). The simplest solution [16] is to use a

truncated Taylor expansion of S(Q,p,e€) in all three vari-
ables, keeping only the minimum number of terms necessary
to be able to reproduce locally the fixed-point branches of all
the orbits taking part in a given bifurcation. These truncated

forms of S (Q.p,e€) are the normal forms which are discussed
in Appendix A 2, Sec. C.

C. Uniform approximation for the TCB

Equipped with the normal form of the TCB given in Ap-
pendix A 2, Sec. C we now calculate the contribution of a
pair of periodic orbits A and B undergoing a TCB to the
semiclassical trace formula. We follow closely the treatment
of [25], where uniform approximations for the generic bifur-
cations corresponding to [10,16] were derived.

Since Eq. (54) is invariant under canonical transformation
(Q,p)—(Q’,p"), we may think of the variables Q,p to be
the adapted coordinates for which Eq. (A13) and the equa-
tions given thereafter are valid. We are therefore allowed to

insert for S(Q,p,€) the normal form derived in Appendix A
2, Sec. C for the TCB, in order to derive the uniform ap-
proximation to the trace formula which includes the orbits
taking part in the TCB.

We will do this in two steps. First, we evaluate Eq. (54)
only at e=0. This yields the so-called local uniform approxi-
mation in the spirit of Ozorio de Almeida and Hannay [46].
In the second step, we use the full normal form (A24) and
the corresponding functions C(Q,p, €) defined by Eq. (58) to
find, after some suitable transformations, the global uniform
approximation in the spirit of [25,47,48]. The latter yields
asymptotically the Gutzwiller trace formula for the orbits A
and B sufficiently far from the bifurcation.

We now use for S(Q,e) the normal form (A29) of the
TCB (omitting the tilde on the variables Q,p, € and on b).

Using the relation (3), the function T in Eq. (59) becomes

1(Q,€) = TA(E) - 0. (60)

After the elementary p integration, yielding a complete
Fresnel integral, we obtain for Eq. (54)
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;— Re /MSalE)=i(m/2)(a,4+1/2)

V2

0g(E) =

X[T4(E)F(b,e) — G(b,€)], (61)

where we have defined the two following one-dimensional
integrals:

F(b,e) = f dQe M0 +b0) (62)

- : dF
G(b,e) = J dQQZe‘(”ﬁ)“Qz*”Qs)=ih[9—(b,e). (63)
€

—00

Using the substitution Q=x—é with Q=e/3b, we obtain

A\ amasie e
F(b,6)=277(_> AN (= 7"), 72/ = ——57,
3o Gloh A"
(64)
where Ai is the Airy function (see [57], Sec. 10.4) and
26
AS(e)=— ——. 65
(e) 7 (65)

Using the right-hand side of Eq. (63) to calculate G(b, €), we
finally obtain for the level density

2

\,/;%7/6(3|b|)1/3

X Re ¢ lIMSAE+1MAS(@=(m/2)(04+1/2)]

0g(E) =

X [(TA(E) + 5—;22)Ai(— Z')

2€
3lp)*?

+i ﬁ”%i’(—z’)]. (66)

1. Local uniform approximation

We first give the result (66) for €=0, using the known
value [57] of Ai(0), to find the local uniform level density at
the bifurcation energy E,,

TA(EO)F(%) [ 1 T 77]
081, (Ey)=—F———""— —SA(E) ——as—— |,
%1oc(Eo) 77\/#6 16| p| 13 cos 7 4(Ep) 20‘A 4

(67)

which contains the combined contribution of both orbits A
and B taking part in the transcritical bifurcation. An explicit
expression for the calculation of the normal form parameter
b is given in Eq. (37) of Sec. II C. The result (67) looks
identical to that obtained in [25] for the generic SNB. The
reason is that the normal form for this bifurcation is [25]
§(Q,p,6)=—eQ—bQ3—0p2/2, which for e=0 gives, of
course, the same result as the normal form (A29). Note that
the power 7/6 of % in the denominator is by 1/6 higher than
in the semiclassical amplitude (51) of an isolated orbit.

PHYSICAL REVIEW E 77, 046205 (2008)

2. Global uniform approximation

The result (67) gives the correct semiclassical amplitude
of the bifurcating pair of orbits A and B only locally at the
bifurcation, i.e., for e=0. We want, however, to know it is
also away from the bifurcation, and in particular, also in the
limit where it can be written as a sum of the two individual
contributions of the isolated orbits A and B to the standard
Gutzwiller trace formula (50). To achieve this, we note that if
we use the asymptotic forms of the Airy function and its
derivative in Eq. (66) for |z'| > 1, we obtain two terms that
formally look similar to contributions to Eq. (50) with am-
plitudes of the form (51), but with the actions Spo(E), peri-
ods Tpo(E), and stability traces tr Mpo(E) replaced by their
expansion to lowest order in €, as found from the normal
form and given in Egs. (A26) and (A27).

The next intuitively obvious step is therefore to rewrite
the asymptotic form of Eq. (66) in terms of the locally ex-
panded quantities Spp(€), Tpo(€), and tr Mpo(€) of the two
orbits (PO=A,B) and then to replace them by the correct
functions Spo(E), Tpo(E), and tr Mpo(E) found numerically
for the isolated orbits away from the bifurcation. This step
has been rigorously justified in [25] by some appropriate
transformations and need not be repeated here. The calcula-
tion goes exactly the same as that presented in [25] for the
case of the SNB on that side where both orbits are real. The
reason is that although the normal forms of the two bifurca-
tions are different, they lead to identical integrals after a
translation in the integration variable Q.

The result is the following uniform contribution of the
two bifurcating orbits to the Gutzwiller trace formula:

gun(E) = Vo] 2L (ﬂ@ .

= _ =7 lAi(-
\E cos P 20’) i(=2z)

—éﬁ9$4gﬂ—Z%A”ﬁ)-(“)

Z h 2

The quantities occurring in Eq. (68) are defined as

1
z=(3¢2)*3, &= %|SA - Syl

S= %(SA +8p), o= %(O'A +0p),

A= %(,,4A +Ap), AA= %(AA — Ap)sgn(S, - Sp),
(69)

all to be taken at the energy E, where Spp(E) and opg are the
actions and Maslov indices, respectively, of the isolated pe-
riodic orbits on either side of the bifurcation, and App(E)
>0 are their Gutzwiller amplitudes (51).

At the bifurcation (e=z=£=0), the result (68) reduces to
the local uniform approximation (67). Far enough away from
the bifurcation, it goes over to the contribution of the isolated
orbits A and B to the standard Gutzwiller trace formula. In-
deed, expressing the Airy function in terms of Bessel func-
tions as [57]
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Ai(-z) = %V’E[Jl/z.(f) +J_15(8)],

Ai'(-z)= %Z[Jm(g) - J_;53(8)], (70)

and using their asymptotic form

J,—- —

2 T T
—cos|é——v——| foréx>1, (71)
wé 2 4
we obtain from Eq. (68) for > 1, i.e., for [S,—Sg| > 2%, the
sum of the isolated Gutzwiller contributions to the trace for-
mula

Sg(E)= 2 Apo(E)cos

( Spo(E) 7
PO=A.B

A - EO-PO> > (72)

with the amplitudes Apo(E) given in Eq. (51).

For the reason given above, the result (68) looks identical
to that given in [25] for the SNB on that side where the two
orbits are real. The present result holds on both sides of the
TCB and can easily be seen to yield asymptotically the result
(72) on both sides, with the roles of the orbits A and B and
their Maslov indices properly exchanged.

D. Numerical test

We present here a numerical calculation of the density of
states, both quantum mechanical and semiclassical, of the
GHH Hamiltonian (38) with y=0.6, 8=0.07, whose shortest
orbits and stability traces are shown in Fig. 2. The parameter
« in the Hamiltonian (38) has been chosen as a=0.04. The
three saddles then lie at the energies Ey= 103, E; =293, and
E,=390 in units such that the spacing of the harmonic-
oscillator spectrum reached in the limit £E— 0 equals Zw=1.
(See Fig. 2 for the scaled energies ¢;, e, and e, of the
saddles.)

The spectrum of the quantum-mechanical Hamiltonian
corresponding to Eq. (38) has been obtained by diagonaliza-
tion in a two-dimensional harmonic oscillator basis. Strictly
speaking, the spectrum is not discrete since the system has
no lower bound. However, for energies below the three
saddles, the tunneling probabilities are exponentially small.
In principle, the semiclassical trace formula can also be ap-
plied in the continuum region above the saddles, if the (com-
plex) energies of the resonances are used to calculate the
density of states. For a detailed discussion of this situation,
we refer to [38] where a semiclassical calculation has been
successfully performed for the standard HH system up to
twice the saddle energy. In the present system, the discrete
energies obtained for Ey<E=<150 in the numerical diago-
nalization turn out to be good approximations to the real
parts of the resonance energies, while the imaginary parts of
the resonances are still negligible.

For our present test, we have chosen a coarse-graining
width in Eq. (52) of AE=0.6. This allows us to restrict the
summation over the periodic orbits (PO) to the primitive
(“period one”) orbits; including second or higher repetitions
does not affect the numerical results within the resolution of
the lines presented in the figure below. As we can see in Fig.
2 (left panel), there exist only five “period one” orbits in the
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system below the scaled energy e==1.5 corresponding to
E=156.

In Fig. 11, we show the oscillating part of the level den-
sity obtained for «=0.04 as a function of the unscaled energy
E, up to E=135 which corresponds to e ==1.3. The solid lines
display the coarse-grained quantum-mechanical result which
is the same in all three panels. In order to extract the oscil-
lating part of the quantum density of states (52), we sub-
tracted its Strutinsky averaged part which here corresponds
to the Thomas-Fermi approximation [24]. The crosses, con-
nected by dashed lines, represent the semiclassical result in
various approximations. The regular fast oscillations with pe-
riod ~1 on the energy scale E come from the common av-
erage action Spo(E) of the leading periodic orbits, which
becomes the action Syo(E)=27E of the harmonic oscillator
(HO) in the limit £— 0. The beatlike slow variation in the
amplitude of Sg(E) is due to the interferences of the periodic
orbits and can be captured by the semiclassical trace formula
(53).

In the top panel of Fig. 11, the five orbits A, B, C, A’, and
A" are included in the trace formula (53) with their
Gutzwiller amplitudes (51). Although they qualitatively re-
produce the main trends of the beating density of states, they
overestimate it. One can clearly see the divergence at E
=89 corresponding to the scaled energy ercp=0.854 447,
where the TCB of the orbits A’ and B occurs. (The diver-
gences due to the PFB sequence of the orbit A near e
=0.993 +» E=103.5 cannot be seen with this resolution.) The
center panel shows the same semiclassical result, but omit-
ting the contributions of the bifurcating orbits A’ and B.
Clearly, the agreement with quantum mechanics is not good
even far from the bifurcation, showing that these orbits al-
ways play a role. In the bottom panel, the orbits A, C, and A”
are again included as isolated orbits with the amplitudes
(51), while the combined contribution of the bifurcating or-
bits B and A’ is included in the global uniform approxima-
tion given in Eq. (68). The agreement between semiclassics
and quantum mechanics is now excellent, demonstrating the
adequacy of the uniform approximation. The fact that the
isolated-orbit approximation in the top panel does not work
even far away from the bifurcation shows that the orbits A’
and B do not become isolated enough in the energy region
shown; i.e., the asymptotic form (72) of the uniform approxi-
mation is not reached. This could already be expected from
the fact that the stability traces tr M(e) of these orbits stay
very close to +2 for all e<<1.2, as can be seen in Fig. 2.

In the energy limit E—0 (not shown in Fig. 11), the
present semiclassical approximations are not appropriate due
to the integrable limit of the harmonic oscillator. A corre-
sponding uniform approximation for the standard HH poten-
tial has been derived in [36]. It can be generalized in a
straightforward manner to the GHH systems, following the
lines of [36], but this would lead beyond the scope of the
present paper.

V. SUMMARY

We have discussed transcritical bifurcations (TCBs) of pe-
riodic orbits in nonintegrable two-dimensional autonomous
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FIG. 11. Oscillating part 8g(E) of the density of states in the GHH potential (38) with y=0.6, 8=0.07, and a=0.04, plotted versus the
unscaled energy E. The quantum-mechanical (qm) results are shown by the solid lines (identical in all three panels), different semiclassical
(scl) approximations are shown by the crosses. Both qm and scl results have been coarse-grained by a Gaussian with width AE=0.6, see Eq.
(52). Top: the five shortest (primitive) orbits A, B, C, A’, and A” are included by the standard Gutzwiller trace formula (51), (53) for isolated
orbits. Note the divergence near E=89, corresponding to ercg=0.854 447, where the TCB of orbits A’ and B occurs (cf. Fig. 4). Middle:
Same as in the top panel, but the two crossing orbits A" and B are omitted. Bottom: Same as in the middle panel, but now the crossing orbits

A’ and B are added in the global uniform approximation (68).

Hamiltonian systems. We have first discussed the mathemati-
cal aspects of the TCB, making use of recent studies by
Jinich [11,12]. We then have, with the help of numerical
examples in generalized Hénon-Heiles (HH) systems, dis-
cussed their phenomenology and their unfoldings under per-
turbations. We have shown, in particular, that a TCB may
also exist in a system without any discrete symmetry, al-
though it does not belong to Meyer’s list [10] of generic
bifurcations. The reason is our restriction to systems contain-
ing straight-line librations. In such systems, the TCB appears
to be the generic isochronous bifurcation of the straight-line
libration while its isochronous pitchfork bifurcation (PFB)
represents an exception expressed by the condition P ,=0 in
Eq. (19). Using this condition and the explicit expression
(37) for the calculation of P, for Hamiltonians of the form
(25), we have exploited a special type of unfolding of the
PFB to construct a perturbation of the standard HH system
under which the TCB occurs.

So far, we have only encountered TCBs of straight-line
librational orbits. In most examples, the second orbit that
takes part in the TCB with the straight-line libration is also a
librational orbit, though not along a straight line. That this
need not be so has been shown in the example in Fig. 8,
where the second orbit is a rotation (except, of course, at the
TCB where it coincides with the straight-line libration). This

system, in the presence of the momentum-dependent pertur-
bation (47), is the only example of a Hamiltonian which does
not have the form (25) and in which we found a transcriti-
cally bifurcating straight-line orbit. From the general criteria
given in Sec. II B, however, we see no a priori reason why
rotational orbits should not undergo TCBs as well. Further-
more, it is obvious that a given straight-line orbit can always
be transformed into a more complicated one by suitable ca-
nonical transformations. The inverse question—if an arbi-
trary nonlinear periodic orbit can be canonically transformed
into a straight-line libration which can bifurcate
transcritically—might also have a positive answer, but we
see no way of proving or testing this, nor can we give a
nontrivial example, since periodic orbits (except straight-line
librations) in nonintegrable systems usually cannot be given
analytically.

Finally, we have constructed a global uniform approxima-
tion for the inclusion of transcritically bifurcating periodic
orbits in the semiclassical trace formula for the quantum den-
sity of states. A numerical comparison with the fully
quantum-mechanical calculation of the coarse-grained den-
sity of states yields excellent agreement. The normal forms
of the TCB and the isochronous PFB have been derived in
Appendix A, and in Appendix B we also point to a “false
TCB” which is the result of a stability exchange between
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different orbits via an intermediate periodic orbit through a
pair of PFBs.
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APPENDIX A: NORMAL FORMS

In singularity theory (see, e.g., [21]) and catastrophe
theory (see, e.g., [55]) it is standard to classify bifurcations
according to their normal forms. In Appendix A 1 we briefly
discuss normal forms for isochronous bifurcations in non-
Hamiltonian one-dimensional systems and give the explicit
forms for the TCB, the PFB, and the saddle-node bifurcation
(SNB).

While non-Hamiltonian fields can always be transformed
to normal forms by suitable coordinate transformations, the
situation is more complicated for Hamiltonian fields [56].
Here the normal forms depend on pairs of canonical vari-
ables, such as the Poincaré variables (¢,p) used in Sec. II,
and must be derived, for a given Hamiltonian and a given
type of bifurcating orbit, from the generating function

S(Q.p.,€) of the Poincaré map or, equivalently, from the

function S(Q,p,e) given in Eq. (55), by suitable canonical
transformations. The strength of the normal forms—if they
can be found—is that they are unique for each generic type
of bifurcation and do not depend on the particular form of
the Hamiltonian or the bifurcating orbit. However, the reduc-

tion of §(Q, p,€) to one of these generic normal forms is,
according to Arnold [56], “generally not possible, and formal
series for canonical transformations reducing a system to
normal form generally diverge.”

Nevertheless, for the generic bifurcations occurring in
two-dimensional symplectic maps, as analyzed and classified
by Meyer [10], normal forms suitable for semiclassical ap-
plications have been given in [16,46].*

1. Normal forms for one-dimensional
non-Hamiltonian systems

We follow here the book of Golubitsky and Schaeffer [21]
and use their notation. In a simple one-dimensional problem
with a “state variable” x and a “bifurcation parameter” \, one
may study the set of values (x,\) satisfying the equation

gx,\) =0, (A1)

where g(x,\) is a differentiable scalar function of both argu-
ments. Bifurcations of this set occur at critical points (xg,\g)
where

*We point out a misprint that occurred in both [16] and [46]: the
normal form for the generic SNB was erroneously given analogous
to that in Eq. (A24), which is the normal form of the TCB. For the
SNB the first term should correctly be —eQ rather than —eQ>.
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gulxoho) = j—;oc,x) ~0. (A2)

XN

The TCB can be specified by the following criteria: at the
critical point (xy,\), the function g must fulfill

g:gng}\:o, gxxi()’ detdzgzgxxg}\)\_gi)\<o’
(A3)

where the subscripts denote partial derivatives with respect
to the corresponding variables. For the fixed points x,=x,,,,
=x of the quadratic map (1), we obtain the function g(x,r)
=rx(1—x)—x which fulfills the criteria (A3) with A\=r at the
critical point (xy=0,ry=1), so that a transcritical bifurcation
must occur there.

Normal forms are the simplest functions, usually taken to
be polynomial forms in x and N\, which obey the criteria for
a given bifurcation. They can often be found by Taylor ex-
pansion of a given equivalence class of functions around the
critical points, keeping the lowest necessary number of terms
required to fulfill the given criteria. A valid normal form for
the TCB is [22]

grep(N) = * &% = \x, (A4)

which fulfills the criteria (A3) at (xy,\)=(0,0). Normal
forms are not unique. The following form is easily seen to be
strongly equivalent (in the sense of [21]) to Eq. (A4):

gsp(t,N) = £ x2=2\2, (A5)

since it also fulfills the criteria (A3) at (xy,A)=(0,0). Al-
though the bifurcation corresponding to (A5) in [21] is re-
ferred to as “simple bifurcation,” it is identical to what we
here call the TCB.

The criteria for the isochronous PFB are [21,22]

g:gx:g)\:gxx:()’ gx)\#(), gxquéos (A6)
and its standard normal form is
gerp(x. M) = * x’ = \x. (A7)

For completeness we give here also the criteria for the
SNB (or tangent) bifurcation (in [21] called “limit point™),

g=gx=0’ g)\;&()’ gquﬁov (AS)
and its normal form
gSNB(x,)\) = =x .x2 -\ (A9)

Golubitzky and Schaeffer [21] also list the “isola center”
bifurcation whose criteria are

8=8x= 8\ g.)cx9e 0’ detd2g>0? (AIO)
with the normal form
gicleN) = = (2 + 0. (A11)

In two-dimensional Hamiltonian systems, the isola center
(IC) is, according to Jinich’s classification [11], a rank 1

SNote that in [21], the name “transcritical” is used for a whole
class of bifurcations, differently from our restricted use of the term.
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bifurcation for which the Hessian matrix K in Eq. (17) is
regular and definite.

2. Normal forms for crossing bifurcations

In order to find normal forms for the two types of crossing
bifurcations discussed in this paper, which we need in the
semiclassical trace formula (54), we follow the heuristic ap-
proach of determining a truncated Taylor expansion of

S(Q,p,€) with the minimum number of terms necessary to
describe the required properties of these bifurcations. To this
purpose, we first establish relations between the partial de-
rivatives of the functions Q(q,p,€) and P(q,p,e€) in Eq. (4),

and the partial derivatives of the function S(Q.p.€ for
which we use the same notation as in Sec. I A. Translating
the criteria given in Sec. II B for the crossing bifurcations in

terms of the partial derivatives of §, we can determine the
normal forms of the TCB and the FLB. Although the formal
transformations needed to arrive at these normal forms are
not necessarily canonical, their use in the semiclassical trace
formula can be justified by the fact that possible missing
terms of higher order do not affect the results to leading
order in % (cf. [16,25,47,48]).

a. Relations between Q,P, and S and their partial derivatives

From Egs. (55) and (56) we obtain the following basic
relations:

Q(CI’P,G) =4q- §p(Q’p’6)s

P(C],P’E) =p+ §Q(Q»p’6)' (Alz)

We now take partial derivatives of these relations with re-
spect to the variables ¢, p, and €, in order to formulate the
conditions for the crossing bifurcations discussed in Sec. II B

in terms of partial derivatives of the function S(0, p,€). This
procedure is simplified by the following step. The splitting
lemma of catastrophe theory (see [55], pp. 95 and 103) states
that after a suitable (but perhaps not canonical) coordinate

transformation, the function S(Q, p,€) can be split up in the
following way:
~ ag 2
S(Q7p’€)=S(Q7€)_Ep 5 0-;&()5 (A13)
where S(Q, €) does not depend on p any more. In the suitably

adapted coordinates ¢g,p and Q,P for which Eq. (A13) is
true,6 we obtain the following relations:

Qq(e) = 1’ Qp(e) =- §pp(€) =0,
Pq(f) = SQQ(E), Pp(f) =1+ O'SQQ(G), (A14)
and tr M(€) becomes
tr M(€) =2+ aSyp(€), (A15)

®And for which M 4(0) has the form (10) [see also footnote 2].
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which is valid along the fixed-point branches of both orbits A
and B. We also give some of the higher partial derivatives of
Q and P at €=0 (valid in the adapted coordinates),
Qyy=0, Q=0 Pgp= 05000
(A16)

Pyy=5S000

and

(A17)

Pye=Sp0e  Paqq=S0000-

b. Criteria for the two crossing bifurcations

We can now express the criteria for the two types of
crossing bifurcations introduced in Sec. II B directly in terms
of the parameter o and the partial derivatives of the function
S(Q, e) defined in Eq. (A13). To have a bifurcation of the A
orbit at e=0, we must have

S00(@=0,e=0)=0 (bifurcation of A orbit).
(A18)

For the occurrence of a rank 1 bifurcation, we have the cri-
terion (see the end of Sec. IT A)

P.=Sp=0 (rank 1 bifurcation). (A19)

Since (P,Q)=(p,q)=(0,0) then is the fixed-point branch of
the A orbit for all €, the function S(Q, €) must fulfill, due to
Eq. (A12), the condition
Sp(0,6)=0 V € (fixed-point branch of A orbit).
(A20)
The criterion for the occurrence of a crossing bifurcation

is that the slope tr M;(0) given by Eq. (12) be nonzero, see
also Eq. (18). We therefore need

S

w=—0F0,

Sooe # 0 (crossing bifurcation).

(A21)
The criterion for this bifurcation to be transcritical is
Sooo # 0  (transcritical bifurcation). (A22)

For the occurrence of a forklike bifurcation, we must have

Soo0o # 0 (forklike bifurcation).
(A23)

S000=0,

We are now ready to construct the simplest normal forms

for the function §(Q, p,€), split the same as in Eq. (A13),
that fulfill all the above criteria, Egs. (A18)—(A21) and either
Eq. (A22) or Eq. (A23).

¢. Normal form of the TCB

For the transcritical bifurcation, the normal form ob-
tained in this way is

E(Q,p,e)=—eQ2—bQ3—§p2 (b+#0), (A24)

with b=—équ. An explicit formula for calculating P, and

hence the parameter b is given in Eq. (37). The normal form
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(A24) corresponds to that of the TCB in non-Hamiltonian
systems given in Eq. (A4) in Appendix A 1, if we choose

§Q(Q, p=0,€6)=grcp(q,€), but it has, to our knowledge, not
been discussed in connection with bifurcations of periodic
orbits in Hamiltonian systems.

The fixed-point branch of the B orbit is easily found to be

2 3b
ppe)=0; QOple)=- 56@ e3(0)=— FQ

(A25)

The stability traces of the two orbits are then found from Eq.
(A15) to be

trM,(e)=2-20%€,

tr Mg(e) =2 +20%€, (A26)

fulfilling the “TCB slope theorem” (20). Along the branch B,

the function S(Qj.pg. €) yields a contribution to the action of
the B orbit. Noting that the contribution to the A orbit is zero,
this yields the action difference of the two orbits:

S(Qppp € =AS=Sz— Sy =~ (A27)

6b>

Note that a sign change of either o or € in Eq. (A24)
simply corresponds to exchanging the orbits A and B,
whereas a sign change of b does not affect the local predic-
tions (A26) and (A27).

In the applications of the normal forms for semiclassical
uniform approximations, one usually assumes o= *1 (see,
e.g., [47,25]). However, when starting from an arbitrary
Hamiltonian, this is not automatically fulfilled. In fact, one
sees directly from Eq. (A14) that o=Q, which a priori is not
of modulus unity. But we can easily absorb the absolute
value of o by a canonical stretching (shear) transformation:

(Q.,p)—(Q,p) specified by

0=0ndl, F=p\lo]. (A28)
The normal form (A24) then becomes
5(0.p,8 =—€0* - b0 - gﬁz, G==*1 (A29)
with
é=|ole, b=|o]*. (A30)

In Sec. IV B we shall use the form (A29) but omit the tilde
on all variables and constants.

d. Normal forms for two unfoldings of the TCB

We have found two scenarios for the destruction of a TCB
by a perturbation k6H(x,y,p,,p,) of the Hamiltonian, where
Kk is a real parameter. In the first scenario, the bifurcation
unfolds into a pair of SNBs lying opposite to each other on
either side of the unperturbed bifurcation point €. This sce-
nario can be described by adding to the normal form (A24) a
term linear in Q with a negative sign:
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~ o
S(Q.p,€) = - K*Q - €Q* = bQ’ - 51?2 (b>0).
(A31)
It predicts the following local behavior of the stability traces:
| 2
trMyp=2*20Ve - 3bx’>. (A32)

Between the two SNBs, which occur at e= *+ v’% K there are
no real periodic orbits. For e<—v3b « and for €>+3b «, the
pairs of original orbits A and B join and “destroy” each other
in the SNBs. Examples for this scenario are given in Sec.
III C 1, where « is proportional to the strength of a homoge-
neous external magnetic field, and in Sec. III C 2.

In the second scenario, no bifurcation is left in the pres-
ence of the perturbation. The two pairs of orbits approach the
critical line tr M =2 from both sides, come closest to it at the
original bifurcation point €=0, and then diverge from it
again. We will call this an “avoided bifurcation.” It can be
described by a normal form identical to Eq. (A31), except for
an opposite sign of the linear term

§(Q,p,e) = + K20 - €Q*-bQ* - gpz (b>0).

(A33)

This form predicts for the local behavior of the stability
traces

tr Myg=2*20V€ +3bi?, (A34)

corresponding to an avoided bifurcation. An example of this
unfolding of the TCB is given in Sec. III C 3.

Both types of unfoldings have been found also in non-
Hamiltonian one-dimensional systems (see, e.g., [8]). Ac-
cording to [21], one may describe a “universal unfolding” of
the TCB by the normal form

5(0.p.€) = 50 - €0 - bQ? - gpz (b>0). (A35)

This corresponds to Eq. (A31) for §<0 and to Eq. (A33) for
6>0. The above two normal forms are, however, mathemati-
cally different in that they predict only one type of unfolding
for both signs of the parameter « in each case, whereas Eq.
(A35) would predict different unfoldings for the two signs of
one and the same parameter 6. We emphasize that all three
cases describe different (physical) phenomena; we have not
found any realization of the type Eq. (A35) in our numerical
studies of TCBs.

e. Normal form of the FLB

For the forklike bifurcation (FLB), we arrive at the normal
form

5(0.p.€) = — 0> — aQ* - (2—’p2 (@#0), (A36)

with a=—21—4quq. This form is identical to that of the
generic period-doubling PFB [16] and corresponds, with
§Q(Q,P=0, €)=gppp(q, €), to that of the isochronous PFB in
non-Hamiltonian systems given in Eq. (A7).
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The two fixed-point branches of the B orbits here are
given locally by

pe(6)=0; QOple)= * - €2a s e(0) =-2aQ?,
(A37)

where the rightmost relation fulfills the conditions €,(0)=0,
€3(0) #0 given in Eq. (22). The stability traces of the A and
B orbits (on that side of e=0 where the latter exist) are found
locally to be

trM,(e) =2 -20e€,

tr Mg(e) =2 +4oe, (A38)

fulfilling the “FLB slope theorem” (23), and their action dif-
ference becomes

S(Qp.pp.€) =AS=Sp—S,= 5- (A39)
The same local behaviors (A38) and (A39) hold also for the
generic PFB [25].

Note that the B branches describing the bifurcated new
orbits B only exist on that side of the bifurcation where
€/a<0. Changing the sign of € has the same effect as chang-
ing the sign of a. For the GHH potentials, all isochronous
PFBs of the A type orbits have negative values of a.

Changing the sign of o “mirrors” the bifurcation scenario
at the line tr M=+2, i.e., the stabilities of all orbits are ex-
changed from stable to unstable and vice versa.

f. Normal form for unfoldings of the FLB

We have found two scenarios for unfoldings of the FLB,
which are known also to occur in non-Hamiltonian systems
[8,21]. Since the FLB locally is identical to the isochronous
PFB, one may use its universal unfolding in one-dimensional
non-Hamiltonian systems [21] as a guide and choose the
normal form

S(0.p.€) = €Q*— aQ* + 50 + KQ* - ‘2—rp2 (a#0),
(A40)

thus adding a linear and a cubic term in Q to Eq. (A36). One
type of unfolding is obtained for 6# 0. Hereby a pair of
orbits is created in a SNB on one side of a critical value €; of
€ (depending on & and «), while a third orbit is present on
both sides of € and does not undergo any bifurcation. This is
the most usual unfolding of the FLB (and persistent in the
sense of [21]). Examples are given in Fig. 6 (inset closeup)
and in Fig. 7.

The second scenario, more interesting for our present in-
vestigations, is obtained from Eq. (A40) as the special case
6=0. Hereby the FLB (or isochronous PFB) is broken up
into a TCB, occurring at the original bifurcation point €=0,
associated with a near-lying SNB. Examples of this unfold-
ing are shown in Fig. 2 (left panel) and in Fig. 10. The

fixed-point set in this unfolding is found from §p= p=0 and

PHYSICAL REVIEW E 77, 046205 (2008)

2004 S e
o Py Py 7
= S 74? Foo TR
= 2.0 Q /’//: :\\REBE ,,,,,, B /\\\\ Q
- P e
it ! Fioso
1.996 . e AN .
-0.006 -0.003 0.0 0.003 0.006 0.009
«

FIG. 12. Stability exchanges of orbits ' and P in the coupled
quartic oscillator. Both crossings are not transcritical bifurcations.
(See text for details.)

S0(0,6) =260 - 4aQ® - 3kQ*=0, (A41)

yielding the fixed-point branch (Q,,05)=(0,0) of the origi-
nal A orbit, which is not affected by the perturbation with
k#0, and a set of new points (Qg,pp=0), where Qp are
solutions of the equation

4a0*+3kQ +2€=0. (A42)

This corresponds to a parabola in the (Q, €) plane. Calculat-
ing the stability traces tr M 4(e) and tr My(€), one obtains the
graphs seen in Fig. 10. The A branch is locally linear around
€=0. The B branches, realized here by the L¢, L;, and L
orbits, form a tilted parabola with the following properties:
(i) The symmetry line of the parabola has the slope tr M(0)
of the original B orbits created at the unperturbed FLB, obey-
ing the “FLB slope theorem” tr M(0)=-2 tr M,(0) given in
Eq. (23). (ii) The parabola intersects the A orbit in the new
TCB with the slope —tr M (0)according to the “TCB slope
theorem” (20).

APPENDIX B: FALSE TRANSCRITICAL BIFURCATIONS

We briefly address here a mechanism of stability ex-
change which has been described in [39]. Hereby a pair of
periodic orbits exchange their stabilities via an intermediate
periodic orbit which is exchanged between the two other
orbits through two oppositely oriented isochronous PFBs. On
a moderate scale of the control parameter, the intermediate
orbit may not be observed numerically, and the stability
traces of the two main orbits appear to cross the critical line
tr M=2 exactly the same as in a TCB. These are, however,
“false transcritical bifurcations.”

We illustrate this in Fig. 12, calculated for the coupled
quartic oscillator potential  V(x,y)=(x*+y%)/4+ax?y?/2,
which is nonintegrable for all values of « except @=0, 1, and
3 (see [26,39,29]). Shown are the stability traces tr M(a) of
two orbits P and F' which are created from a period-tripling
bifurcation of a straight-line orbit at «=0.6315 and exist
only for «=0.6315. They are isolated at all values of «
except for a=0. At a=0 and near o~ (0.0055 they appear to
cross the same as in a TCB; note that also the same exchange
of Maslov indices by one unit takes place for each orbit.

However, the two orbits have different shapes at all values
of a, as shown by the insets which display their shapes in
the (x,y) plane. Therefore, their fixed points cannot coincide
at either of the crossings, and hence the crossing near
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FIG. 13. Same as Fig. 12, but the scales in both directions are
enlarged by a factor ~10°. Note how the orbit Q intermediates
between the orbits F and P through two pitchfork bifurcations.

a~0.0055 cannot be a TCB. The situation around a=0,
where the system is integrable, is not a bifurcation at all, but
the generic Poincaré-Birkhoff breaking of a rational (3:2)
torus into a pair of stable and unstable isolated orbits.
What actually happens near a~0.0055, as described in
[39], is shown in Fig. 13, where the scale of the graphs
tr M(«) has been enlarged in both directions by a factor
~10°. The graphs tr M(a) really cross slightly above the
critical line tr M=2 (note the shift along the vertical axis by
two units), here at a distance of only ~ 1077 which requires a
high precision of the numerical calculations. Their crossings
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of the critical line, where bifurcations must take place, occurs
at two different points in a tiny distance Aa=3.56X 107",
These bifurcations are isochronous PFBs, and the orbit Q
emitted and reabsorbed by them intermediates between the
shapes of the two crossing orbits. Note that the orbit Q,
which transforms the shape of the F orbit into that of the P
orbit (or vice versa), has twice the discrete degeneracy of the
orbits F and P. Compared to F this is because Q is a rotation
and has two time orientations (while F transforms into itself
under time reversal); compared to P it has a lower discrete
symmetry (it is not symmetric under reflection at the x axis,
but P is). This double degeneracy with respect to the parent
orbits is characteristic of the isochronous (nongeneric) PFB
(see Sec. II B 2).

The change of the shape of the intermediate orbit Q is
very similar to that of an orbit on an integrable torus—and
can hardly be distinguished numerically from it. (It is exactly
the case in the nearby integrable point a=0, where P and F
cross again and correspond to two realizations of one and the
same 3:2 torus.) Under poor numerical resolution—as in Fig.
12—therefore, one might also misinterpret the situation at
a~0.0055 as existence of a locally integrable torus.

Although this mechanism has been observed and pub-
lished quite long ago [39], it does not appear to be widely
known. We deem it worth mentioning and illustrating here,
in order to prevent misinterpretations of such “false” TCBs
that can appear under poor numerical circumstances. (Al-
though misunderstanding should not happen when the shapes
of the orbits are known and/or when it is realized that their
fixed points on the Poincaré surface of section do not coin-
cide at the crossing.)
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